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1 Prove by induction that
nÐ
r=1

r�3r − 1� = n2�n + 1� for all positive integers n. [6]

2 The points P �a, b, 0�, Q �c, d, 0� and R �e, f , 0� all lie in the x-y plane.

(a) Using the vector product, or otherwise, find the area of triangle PQR. [4]

(b) Show that this area is also given by 1
2

�
det�M�

�
, whereM is the matrix

` 1 a b

1 c d

1 e f

a
. [2]

3 (a) Find a vector equation for the line of intersection of the planes with equations

r.

`
2

3

1

a
= 11 and r.

`
1−1
2

a
= 16. [5]

(b) Given that the system of equations

2x + 3y + z = 11

x − y + 2z = 16

4x + 11y − z = k

does not have a unique solution, determine the value of the constant k for which the system is

consistent. [2]

4 Consider the set S = �3, 6, 9, 12� together with ×
15
, the operation of multiplication modulo 15.

(a) Construct the multiplication table for �S, ×
15
� and show that it is a group, G.

[You may assume that ×
15

is an associative operation.] [5]

The group H consists of the set T = �1, 7, 9, 15� together with ×
16
, the operation of multiplication

modulo 16. The multiplication table for H is shown below.

1 7 9 15

1 1 7 9 15

7 7 1 15 9

9 9 15 1 7

15 15 9 7 1

(b) State, giving a reason, whether H is

(i) abelian, [1]

(ii) cyclic. [1]

(c) State also, with justification, whether G and H are isomorphic. [1]
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5 Solve the differential equation
d2y

dx2
+ 3

dy

dx
− 4y = 1 − 8x2, given that y = 8 and

dy

dx
= 3 when x = 0.

[10]

6 The point P in the complex plane represents the complex number z = x + iy.

(a) On a single Argand diagram, sketch the locus of P in each of the following cases:

(i) �z − 2i � = 3; [2]

(ii) �z − i � = �z − 2 + i �. [2]

(b) Write down the cartesian equation of the locus of part (a)(i) and determine the cartesian equation

of the locus of part (a)(ii). [3]

(c) The region of the complex plane for which

�z − 2i � ≤ 3 and �z − i � ≥ �z − 2 + i �

is denoted by R. Calculate, in an exact form, the area of R. [3]

7 A curve has equation y = x2 − x + 1

x2 + x + 1
.

(a) Show that the x-coordinates of any points of intersection of the curve with the line y = k are given

by

�k − 1�x2 + �k + 1�x + �k − 1� = 0,

and deduce the coordinates of the turning points of the curve. [6]

(b) Sketch the curve. [4]

8 The curve C has polar equation r = 5 − 4 cos1 for 0 ≤ 1 < 2π.
(a) Sketch C. [3]

(b) The points P, Q, R and S lie on C such that PR and QS are straight lines through the pole, O,

and PR is perpendicular to QS.

(i) Given that P is the point with polar coordinates �5 − 4 cos 1, 1�, where 0 < 1 < 1
2
π, write

down the polar coordinates of Q, R and S, in terms of 1, cos1 and sin1. [4]

(ii) Show that �OP��OR� + �OQ��OS� is constant for all values of 1, and determine its value.

[2]

9 The equation x3 + px2 + qx + r = 0, where r ≠ 0, has roots !, " and '.
(a) By considering the expression �!" − 1��"' − 1��'! − 1�, show that one root of this equation is the

reciprocal of another root if and only if r�r − p� = 1 − q. [4]

(b) Hence or otherwise show that, in this case, −r is a root of the equation. [2]

(c) Solve the equation 12x3 + 11x2 − 63x + 36 = 0. [4]
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10 (a) Use de Moivre’s theorem to prove that sin 3x � 3 sin x − 4 sin3x and deduce the identity

1
2

@
1

sin x
− 1

sin 3x

A � cos 2x

sin 3x
. [6]

(b) Use the method of differences to find

nÐ
r=0

cos�2 × 3rx�
sin�3r+1x� . [4]

11 (a) Let I
n
= Ó cosn1 d1, where n is a positive integer.

Show that nI
n
= sin 1 cosn−11 + �n − 1�I

n−2 for n ≥ 3. [5]

(b) A curve is defined parametrically for 0 ≤ 1 ≤ 1
2
π by

x = 21 + sin 21, y = 1 + cos 21.
(i) Show that the length of the curve is 4. [6]

(ii) When the curve is rotated through 2π radians about the x-axis, a surface of revolution is

formed having area S. Determine the exact value of S. [7]

12 (a) Without using a calculator, show that if sinh x = 1 then tanh 1
2
x = �

2 − 1. [5]

(b) Show that
d

dx

 
2 tan−1�tanh 1

2
x
�! = 1

cosh x
. [4]

(c) Use the substitution tan 1 = sinh2x to find the exact value of

Ô
1
4
π

0

�
tan1 sec21
1 + tan1 d1.

[You may use, without proof, the result that tan 1
8
π = �

2 − 1.] [7]
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